Search results for " 46N10"

showing 3 items of 3 documents

Characterization of the Clarke regularity of subanalytic sets

2017

International audience; In this note, we will show that for a closed subanalytic subset $A \subset \mathbb{R}^n$, the Clarke tangential regularity of $A$ at $x_0 \in A$ is equivalent to the coincidence of the Clarke's tangent cone to $A$ at $x_0$ with the set \\$$\mathcal{L}(A, x_0):= \bigg\{\dot{c}_+(0) \in \mathbb{R}^n: \, c:[0,1]\longrightarrow A\;\;\mbox{\it is Lipschitz}, \, c(0)=x_0\bigg\}.$$Where $\dot{c}_+(0)$ denotes the right-strict derivative of $c$ at $0$. The results obtained are used to show that the Clarke regularity of the epigraph of a function may be characterized by a new formula of the Clarke subdifferential of that function.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC][ MATH ] Mathematics [math]Computer Science::Computer Science and Game Theory021103 operations researchSubanalytic setTangent coneApplied MathematicsGeneral Mathematics010102 general mathematicsTangent coneMathematical analysis0211 other engineering and technologiesSubanalytic sets02 engineering and technologyCharacterization (mathematics)16. Peace & justice01 natural sciencesMSC: Primary 49J52 46N10 58C20; Secondary 34A60Clarke regularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematics[MATH]Mathematics [math]Mathematics
researchProduct

Characterizations of convex approximate subdifferential calculus in Banach spaces

2016

International audience; We establish subdifferential calculus rules for the sum of convex functions defined on normed spaces. This is achieved by means of a condition relying on the continuity behaviour of the inf-convolution of their corresponding conjugates, with respect to any given topology intermediate between the norm and the weak* topologies on the dual space. Such a condition turns out to also be necessary in Banach spaces. These results extend both the classical formulas by Hiriart-Urruty and Phelps and by Thibault.

[ MATH ] Mathematics [math]Mathematics::Functional AnalysisApproximate subdifferentialDual spaceConvex functionsApplied MathematicsGeneral MathematicsBanach spaceUniformly convex spaceSubderivativeApproximate variational principleCalculus rulesLocally convex topological vector spaceCalculusInterpolation spaceMSC: Primary 49J53 52A41 46N10[MATH]Mathematics [math]Reflexive spaceLp spaceMathematics
researchProduct

Weak and strong convergence of an inertial proximal method for solving bilevel monotone equilibrium problems

2022

In this paper, we introduce an inertial proximal method for solving a bilevel problem involving two monotone equilibrium bifunctions in Hilbert spaces. Under suitable conditions and without any restrictive assumption on the trajectories, the weak and strong convergence of the sequence generated by the iterative method are established. Two particular cases illustrating the proposed method are thereafter discussed with respect to hierarchical minimization problems and equilibrium problems under saddle point constraint. Furthermore, a numerical example is given to demonstrate the implementability of our algorithm. The algorithm and its convergence results improve and develop previous results i…

Weak and strong convergenceBilevel Equilibrium problemsOptimization and Control (math.OC)G.1.6Equilibrium Fitzpatrick transformFOS: MathematicsProximal algorithm90C33 49J40 46N10 65K15 65K10[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Monotone bifunctionsMathematics - Optimization and Control
researchProduct